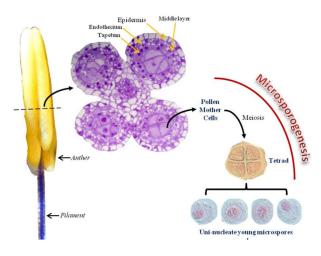

Sporogenesis & gametogenesis

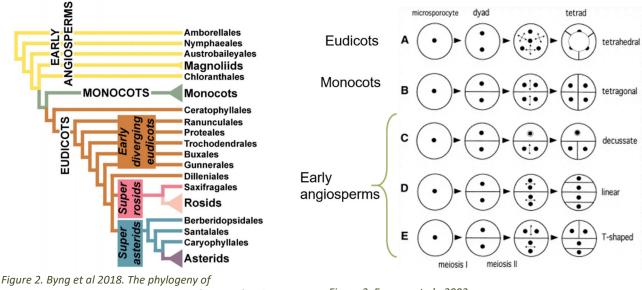
Definitions


- Mega \rightarrow Large, hence female
- Micro \rightarrow Small, hence male
- Spore \rightarrow Cells that result from meiosis in plants and fungi
- Gamete → Reproductive cells formed by mitosis
- **Genesis** → Creation, formation
- Phyte → Plant

Overview of floral organs

Figure 1.

http://courses.washington.edu/bot113/family_pages/Berberidaceae/berberidaceae.html https://www.treeguideuk.co.uk/ovules-and-placentas/

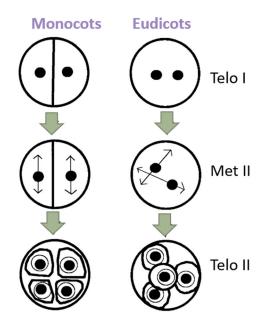


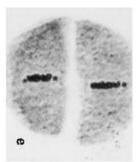
Franchi, Pacini, Rottoli, 1984

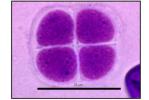
Microsporogenesis

Meiosis that results in the formation of a male spore that will form the male gametophyte (Pollen)

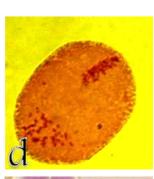
- Starts with the microsporocyte or pollen mother cell
- Meiosis I is the same in both monocots and dicots

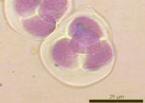

angiosperms poster: a visual summary of APG IV family relationships and floral diversity. http://www.plantgateway.com/globalflora/


Figure 3. Furness et al., 2002


Monocots vs Eudicots

Cell wall formation occurs prior to Meiosis II in monocots, but not in eudicots


- In monocots, the Metaphase II spindles are parallel to each other. In eudicots, they are at angles, defining the poles of a tetrahedron (i.e., a pyramid)
- Simultaneous cell division occurs after telophase II
- The original cell wall of the pollen mother cell becomes a callose layer holding the microspores together
- Each telophase II cell becomes one microspore
- Monocots form a radial or tetragonal tetrad of microspores
- Eudicots form a tetrahedral tetrad
- Early dicots form decussate, linear or T-shaped tetrads



Cell Biology International 32: 1459-1463. Carvologia 65:258-262. Class alum Doug Heckart

Class alumna Rebecca Tashiro

Microgametogenesis Maheshwari, 1950

The formation of the male gametophyte (pollen) via mitosis from a microspore

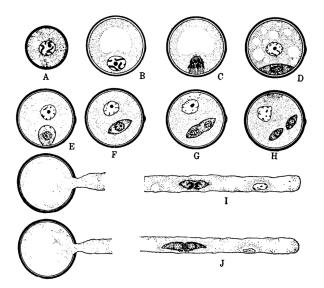
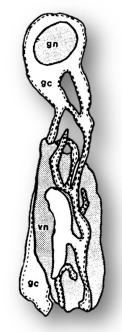
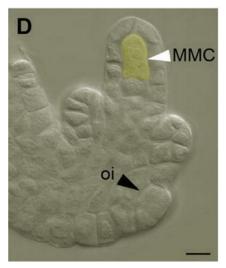


Figure 4. Panchanan Maheshwari, 1904 – 1966. https://royalsocietypublishing.

Stages of microgametogenesis. From Maheshwari, 1950

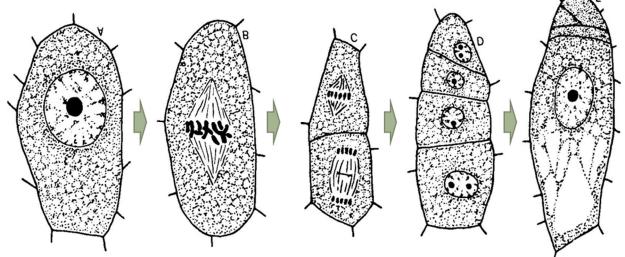

- The first mitotic division is asymmetric and gives a 2-cell pollen grain (D in the diagram)
- The nucleus in the center is called the vegetative or tube nucleus
- The generative cell (formerly called generative nucleus, but now know that it is a complete cell) divides to form two sperm cells
 - When this happens in the pollen tube, as in the example at right, the pollen is said to be binucleate
- In some plants, the division of the generative cell to form the two sperm cells occurs in the pollen grain itself
 - Such pollen is called trinucleate pollen

The male germ unit


Morgensen, 1992

The nucleus of the vegetative cell and the generative cell [or sperm cell(s)] become associated in a complex known as the male germ unit

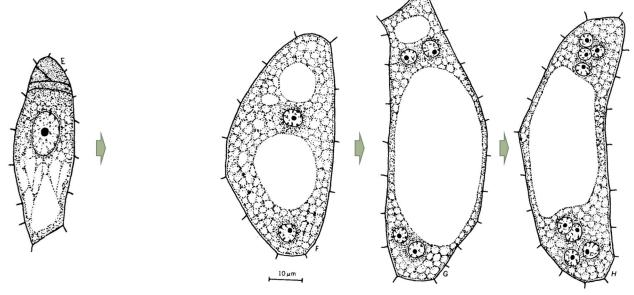
- In the diagram, gn = generative cell nucleus; gc = generative cell; and vt = vegetative cell nucleus.
- This association can be transient, as in barley, or long-lasting, as in rhododendron.
- Function of this association remains unknown



Megasporogenesis

Megaspore mother cell. Sexual Plant Reproduction 24:47-61

<u>Megasporogenesis</u> = the formation of the female spore (<u>megaspore</u>) via meiosis In megasporogenesis, the megaspore mother cell (A) undergoes meiosis I (B) to form 2 daughter cells, each of which undergo meiosis II (C), forming a linear tetrad of megaspores (D). Of these, 3 degenerate, leaving one functional megaspore (E):


Mega sporo- and gametogenesis drawings by Walker, 1955

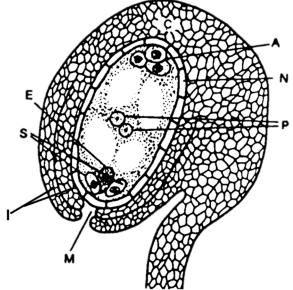
Megagametogenesis

Review by Yadegari & Drews, 2004

<u>Megagametogenesis</u> = the formation of the female gametophyte from the megaspore via mitosis

Megagametogenesis usually consists of 3 mitotic divisions to form an 8-celled megagametophyte. As with microgametogenesis, used to think these were nuclei, but now know that they are true cells:

Megagametophyte


<u>Ovule</u>- the female gametophyte and the integuments (tissues) around it. This becomes the seed.

<u>Ovary</u>- The basal part of the pistil, which contains the ovules inside of it. This becomes the fruit.

The mature megagametophyte is shown at the right

- This structure is called an embryo sac, but this is a misnomer
- Egg sac would be a better term.
- N = nucellus, often limited to a single row of cells, and surrounded by 1 or 2 integuments (I)
- M = micropyle;
- C = the chalazal region
- A = antipodals
- P = polar cells, which fuse to form the central cell
- S = synergids; E = egg

This type of egg sac is the most common type of all, and is called monosporic 8-celled, or simply, Polygonum type.

Maheshwari, 1950

- **Monosporic** All cells in the Polygonum-type egg sac are derived from one telophase II nucleus. Consequently, all the cells in the egg sac have the same genotype.
- **Bisporic** Cells in the egg sac are derived from two different telophase II nuclei. Consequently, cells of 2 different genotypes are present.
- Tetrasporic All 4 products of meiosis contribute to the cells in the egg sac. Cells of four different genotypes can be present in the egg sac.

Type:	Megasporogenesis			Megagametogenesis			
	MMC	Meiosis I	Meiosis II	Mitosis 1	Mitosis 2	Mitosis 3	Egg sac
Monosporic 8-celled Polygonumtype	۲	0			(°) (°) (°)	(0) (0) (0) (0) (0) (0) (0) (0) (0) (0)	8
Monosporic 4-celled Oenothera type	۲	0		9	(0) (0) (0) (0) (0) (0) (0) (0) (0) (0)		$\left(\begin{array}{c} \bullet \\ \circ \end{array} \right)$
Bisporic 8-celled Allium type	\bigcirc	0	6	(°@) (°)	000 000		() () () () () () () () () () () () () (
Tetrasporic 16-celled Peperomia type	\bigcirc	0		000000000000000000000000000000000000000			
Tetrasporic 16-celled Penea type	\bigcirc	0		00 00 00 00	100 000 000 000 000 000 000 000 000 000		640
Tetrasporic 16-celled Drusa type	\bigcirc	0		600	(853) (853)		8
Tetrasporic 8-celled Fritillaria type	\bigcirc	0	() () () () () () () () () () () () () ((°) (2)	(000 CC)		(%) (%)
Tetrasporic 8-celled Phunbagella type	\bigcirc	0	() () () () () () () () () () () () () (60			() 8 9
Tetrasporic 8-celled Plumbago type	۲	0		000000000000000000000000000000000000000			() () () () () () () () () () () () () (
Tetrasporic 8-celled Adoxa type	\bigcirc	0	(°@ 00	(0) (0) (0) (0) (0) (0) (0) (0) (0) (0)			8