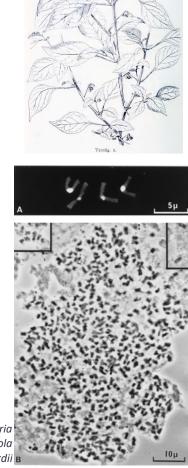
Polyploidy

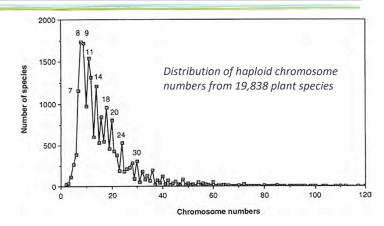
Discovery DeVries 1900

Oenothera bromarchiana. Oenothera gigas. LUTZ 1907



Anne Mae Lutz 1871-1938

Lutz 1907; Gates 1909


Winker 1916

Chromosome number range

A) Chromosomes of Zingeria bierbersteriana; B) Voanicola gerardii в

Masterson, 1994

Polyploidy types (Neopolyploidy) Blakeslee et al, 1923

Kihara and Ono, 1926

Hitoshi Kihara (1893-1986)

Incidence Barker et al, 2016

Clausen et al, 1945

"Fairly safe examples of true autoploids can be recognized only in essentially monotypic genera and sections, and in those groups that have been thoroughly investigated cytogenetically"

Autopolyploidy

Tetrasomic inheritance vs disomic (diploid) inheritance

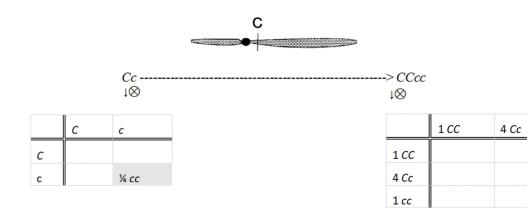
5 possible allelic compositions at a locus

- AAAA quadriplex
- AAAa triplex
- AAaa duplex
- Aaaa simplex
- aaaa nulliplex

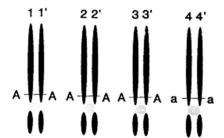
2x & 4x alfalfa

>2 alleles are possible at a locus

- monoallelic	$A_1A_1A_1A_1$	(homozygous)
 unbalanced diallelic 	$A_1A_1A_1A_2$	(heterozygous)
 balanced diallellic 	$A_1A_1A_2A_2$	н
- triallelic	$A_1A_1A_2A_3$	н
- tetraallelic	$A_1A_2A_3A_4$	н

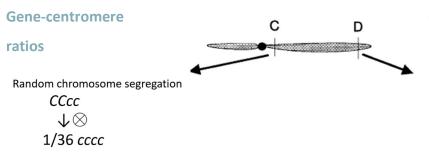

Gametes can be heterozygous

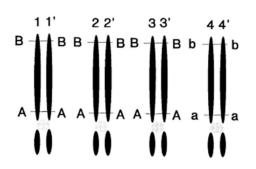
 $\begin{array}{ll} - A_1 A_1 & \mbox{homoallelic} \\ - A_1 A_2 & \mbox{heteroallelic} \end{array}$


1 *cc*

¹/₃₆ cccc

Genetic ratios are complex

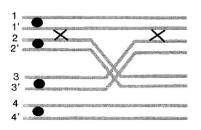

Random chromosome segregation


	···· · · · · · · · · · · · · · · · · ·	Y			
1-2	1'-2				
1-2'	1'-2'				
1-3	1'-3	2-3	2'-3		
1-3'	1'-3'	2-3'	2'-3'		
1-4	1'-4	2-4	2'-4	3-4	3'-4
1-4'	1'-4'	2-4'	2'-4'	3-4'	3'-4'

Gametic	Genotype							
products	AAAa	AAaa						
AA	12	4						
Aa	12	16						
aa	0	4						
Total:	24	24						

VI-C – Autotetraploidy PBGG 8900

Random chromosome segregation Haldane, 1929

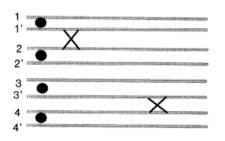


John Burdon Sanderson Haldane (1892-1920)

Now can recover in one gamete:

	ster all on-siste		les		\rightarrow probability = α \rightarrow probability = 1- α				
1-1'		2-2'		3-3'		4-4'	α		
1-2	1'-2								
1-2'	1'-2'								
1-3	1'-3	2-3	2'-3						
1-3'	1'-3'	2-3'	2'-3'				1-α		
1-4	1'-4	2-4	2'-4	3-4	3'-4				
1-4'	1'-4'	2-4'	2'-4'	3-4'	3'-4'				

	Genotype										
Gametic	BB	Bb	BBbb								
products	α = 0	$\alpha = 1/7$	α = 0	$\alpha = 1/7$							
BB	12	15	4	6							
Bb	12	12	16	16							
bb	0	1	4	6							
Total:	24	28	24	28							


distance affects segregation

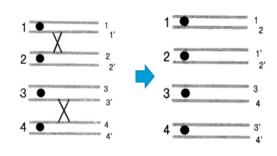
a) Maximal equational segregation, or b) Random chromatid segregation DDdd

 \downarrow_{\bigotimes}

ME:1/20.25; RC: 1/21.8 dddd

Maximum equational segregation Mather, 1935

Sir Kenneth Mather (1911-1990)

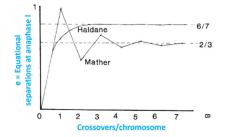

1-1'		2-2'		3-3'		4-4'	α
12	1'-2						
1-2'	1-2						
1-3	1'-3	2-3	2'-3				
1-3'	1'-3'	2-3'	2'-3'				1-α
1-4	1'-4	2-4	2'-4	3-4	3'-4		
1-4'	1'-4'	2-4'	2'-4'	3-4'	31-4		

	Genotype											
Gametic	BI	BBb		BBbb								
products	α = 0	$\alpha = 1/7$	$\alpha = 1/6$	$\alpha = 0$	$\alpha = 1/7$	$\alpha = 1/6$						
BB	12 (1)	15	13	4 (1)	6 (3)	5.33 (2)						
Bb	12 (1)	12	10	16 (4)	16 (8)	13.33 (5)						
bb	0	1	1	4 (1)	6 (3)	5.33 (2)						
Total:	24	28	24	24	28	24						

Summary

		Genotype												
Gametic	B	BBb			BBbb									
products	α = 0	$\alpha = 1/7$	$\alpha = 1/6$	Formulae	α = 0	$\alpha = 1/7$	$\alpha = \frac{1}{6}$	Formulae						
BB	12 (1)	15	13	$^{1}/_{2} + ^{1}/_{4} \alpha$	4 (1)	6 (3)	5.33 (2)	$^{1}/_{6} + ^{1}/_{3} \alpha$						
Bb	12 (1)	12	10	$^{1}/_{2} - ^{2}/_{4} \alpha$	16 (4)	16 (8)	13.33 (5)	$^{4}/_{6}$ - $^{2}/_{3} \alpha$						
bb	0	1	1	+ ¹ / ₄ α	4 (1)	6 (3)	5.33 (2)	$\frac{1}{6} + \frac{1}{3} \alpha$						
Total:	24	28	24		24	28	24							

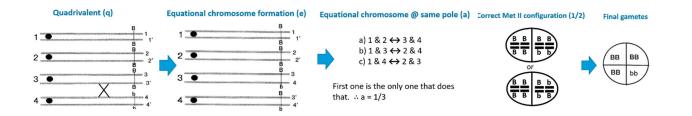
Maximum equational



Haldane

Crossovers	Total	Anapl	nase I separati	ons
per chromosome	arrangements	Reductional	Equational	Proportion equational
0	4	4	0	0.0
0.5	96	48	48	0.5
1.0	2,304	672	1,632	0.708
1.5	55,296	11,328	43,968	0.795
2.0	1,327,104	223,872	1,103,232	0.8313
2.5	31,850,496	4,892,928	26,957,568	0.84638
3.0	764,411,90 4	112,630,272	651,781,632	0.85266
3.5	18,345,885, 696	2,655,126,528	15,690,759,16 8	0.85527
œ	~	1/7	6/ ₇	⁶ / ₇ = 0.85714
n	4×24^{2n}	$(4 \times 24^{2n}) \times [1/7{1+6(5/12)^{2n}}]$	$(4 \times 24^{2n}) \times [6/_7 \{1 - (5/_{12})^{2n}\}]$	6/7[1-(5/12) ²ⁿ]

Mather


Crossoversper	Anap	Anaphase I separations									
chromosome	Reductional	Equational	Proportion equational								
0	1	0	0								
1	0	1	1								
2	1/2	1/2	0.5								
3	1/ ₄	³ / ₄	0.75								
4	³ / ₈	⁵ /8	0.625								
5	⁵ / ₁₆	¹¹ / ₁₆	0.688								
6	¹¹ / ₃₂	²¹ / ₃₂	0.656								
7	²¹ / ₆₄	⁴³ / ₆₄	0.672								
8	⁴³ / ₁₂₈	⁸⁵ / ₁₂₈	0.6641								
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1/3	² / ₃	0.6667								
n	$1-^{2}/_{3}[1-(-^{1}/_{2})^{n/2}]$		² / ₃ [1-(- ¹ / ₂ ) ^{n/2} ]								

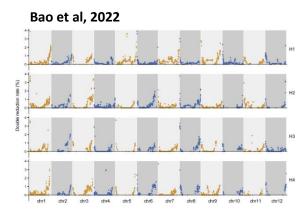


#### **Double reduction**

Blakeslee, Belling, & Farnham, 1923

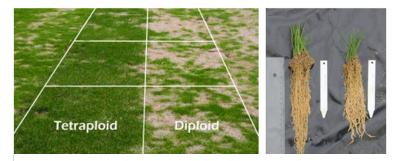





Burnham, 1962

#### Summary

α	=	q	×	е	×	а	×	1/2	_	
Mather	=	1		1		¹ / ₃		1/2	=	¹ / ₆
Haldane	=	1		6/7		¹ / ₃		1/2	=	¹ / ₇


#### Haynes & Douches, 1993

Gene-Double Locus Total centromere reduction ±SE α progeny distance products (cM) Mdh-1 283 7 0.099* 0.037 33.5 6-Pgdh-3 214 7 0.131* 0.049 30.1 Pgi-1 3 0.098ns 0.057 26.0 122 ldh-1 2 0.025ns 0.018 18.4 314 Mdh-2 144 1 0.063ns 0.044 n/a



## Why autotetraploids?

## Auto4x and 2x perennial ryegrass (Lolium perenne)



http://www.greenkeepingeu.com/greenkeeping-feature-tetraploidperennial-ryegrass-technology-explained/

## Which diploids make good autotetraploids?

Levan, 1942; Åkerberg et al., 1961



2x and auto4x daylilies. https://plantlet.org/autopolyploidymultiplying-same-genome/

## Inbreeding at the tetrasomic level

**F** = the coefficient of inbreeding, and is defined as the probability that two alleles are identical by descent. For example, for  $A_1A_2A_2$ , obtained by doubling  $A_1A_2$ , both copies of  $A_1$  are descended from the same allele, making them identical by descent.

- •
- •
- •
- When there is random mating in a 2x population:  $F = \frac{3\alpha}{2+\alpha}$
- Selfing a 2x:  $F = \frac{1}{2}(1 + F')$
- Selfing an auto4x:  $F = \frac{1}{6} [1 + 2 \propto (5 2 \propto)F']$ 
  - Where FT(L) = current level of inbreeding and
  - F' = the previous level of inbreeding

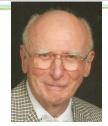
Thus 1 generation of selfing gives 50% in breeding in a 2x plant (F =  $\frac{1}{2}$ ), but only 17% inbreeding (F=1/6) for an autotetraploid (if  $\alpha$  = 0)

## Somatic chromosome doubling

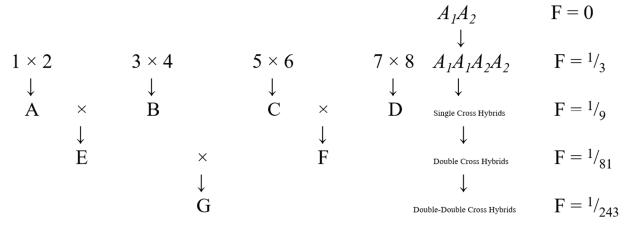
Note that somatic chromosome doubling leads to an inbreeding of F = 1/3:

$$A_1A_2 \rightarrow A_1A_1A_2A_2 \rightarrow \frac{1+0+0+0+1+0}{6 \text{ combinations}} = 2/6 = 1/3$$

In the above examples, there are 6 possible pairs of alleles. Out of these 6 possible pairs, two (indicated in red) are pairs of alleles that consist of alleles that are identical by descent. The resulting F = 1/3 is what one would obtain with a little more than 2 generations of selfing.


# **Analytic breeding**

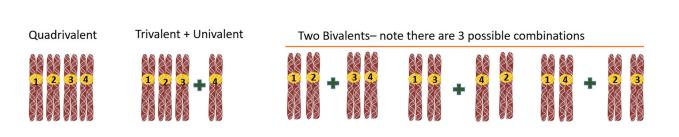
## Chase 1962


Designed a breeding scheme to maximize heterozygosity, called it **analytic breeding** 

## Chase 1963

Designed analytic breeding for potato, extracting 2x potatoes from 4x, selecting at 2x level, and converting to 4x via analytic breeding




Sherrett Spaulding Chase 1918 - 2021



Maximizes heterozygosity. It is not the heterozygosity that is important. Instead, it
maximizes the odds of having at least 1 dominant allele at each locus → capitalizes on
additive genetic variance

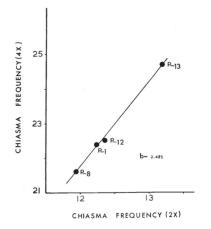
# Fertility in autotetraploids

## Darlington 1932



## **3** possible pairing configurations

## Randolph, 1941




Lowell Fitz Randolph 1894 - 1980

#### Gilles & Randolph, 1951

		to fir	cy of o ve qua	drival	ents		Total no. of cells			quency to five	e qua		ents		Total no of cells
Plant no.	10	9	8	7	6	5	examined	Plant no.	10	9	8	7	6	5	examined
48-326 - 15	8	22	7	2	2	-	41	48-327 - 5		6	16	11	6	2	41
- 21	7	24	9	1	-	-	41	40.527 = 3 - 14		5	18	12	5	ĩ	41
- 22	3	15	16	3	3	-	40		-		~ ~			-	
- 1	3	18	13	2	5	-	41	- 22	-	5	14	15	6	1	41
- 27	3	18	17	2	ĩ	-	41	- 37	-	6	12	13	10	2	43
	-			4	2	_		- 39	-	5	13	16	6	2	42
- 13	6	18	11	4	_	-	41	- 50	-	4	18	13	6	1	42
- 24	6	18	11	4	2		41	- 17	-	4	21	11	5	-	41
- 26	4	16	13	5	3	-	41	- 24	10000	5	19	13	3	1	41
- 52	3	19	12	4	3	-	41		-	3	15	15	7	1	41
53	5	16	14	4	2		41	- 26	-	•			4	1	
- 75	4	15	15	4	3	_	41	- 44	-	6	18	13	4	-	41
	-			•				- 72	-	7	17	12	5	-	41
Total	52	199	138	35	26	-	450	per cent	_	12.0	40.0	31.6	13.8	2.	4
per cent	11.5	44.2	30.7	7.8	5.8			Total	-			144	63	11	455

## Hazarika and Rees, 1967



# R

4. Ledgerd Stilling J . 1906 - 2000



Umesh Chandra Lavania

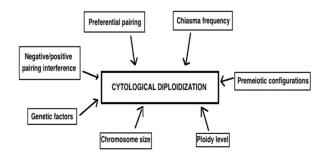
Lavania, 1991

Stebbins, 1971

	2x		4x C ₂			
	% rod II	%⊙II	II	III	IV	I
Lolium perenne	821	18	<b>46</b> î		53↓	
Amaranthus hypochonriacus (C1)	71	29	43	1	55	
A. caudatus	66	34	33	1	64	1
Hyoscyamus muticus	65	30	28	4	67	1
A. edulis	60	40	30		68	2
H. niger	58	41	10	2	76	2
H. algus	59	38	7	6	84	3

Species	Generation	% IV	% Seed Set
Hyoscyamus muticus	C₀	451	65
	$C_1$		
	$C_2$	30	781
H. niger	C₀	271	75
	$C_1$	24	80
	C ₂	22	<b>92</b> †
H. albus	Co	241	43
	C1	17	54
	$C_2$	12	83†

#### Rivero-Guerra, 2008


Auto4x individuals of *Santolina pectinata*: "Chromosome number doubling produces statistically significant decreases in the lengths of the short arm, long arm, and whole chromosome"



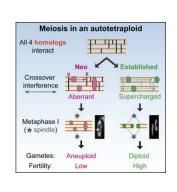
Santolina pectinata

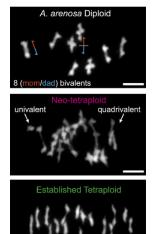
# **Cytological diploidization**

Dorone, 2013



## Arabidopsis arenosa as a model

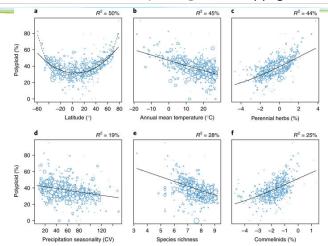




https://extremeplants.org/species/arabi dopsis-arenosa/

#### Hollister et al., 2012; Yant et al., 2013 (Bomblies lab)

# **Evolution of CO interference**

Morgan et al, 2021






# Prevalence

Rice et al., 2019



