Breeding and linkage

Jeffrey Ross-Ibarra @jrossibarra

The need to break linkages

Young and Tanksley, 1989

Red blocks illustrate DNA segments introgressed from the wild species donor of the Tm-2 locus. Lots of linkage drag is present. Targeted recombination could help avoid this linkage drag.

balanced in the bivalent

Significance of CO and its manipulation

Wijnker & de Jong, 2008

- Assemble new (un) desirable combinations
- Break old (un) desirable combinations
- A low frequency of crossing over provides for stability. Favorable gene combinations are preserved, and help a population maintain its adaptation to a particular environment.
- A high frequency of recombination provides more flexibility by continuously creating new gene combinations, allowing a population to adapt to a new environment.
- Information on crossing over is useful to break/maintain linkages during a breeding program

Increased recombination

Tourette et al, 2019

• Point is that increased recombination should permit more genetic gain while preserving diversity

PBGG 8890

Targeted recombination

Ru & Bernardo, 2019

In this example P1 has 1 favorable allele linked to 3 unfavorable alleles.

P2 is the opposite. The desired recombination would move all favorable alleles to one chromosome

RG(x#1) = 211% = gain from 1 targeted recombination

RG(x#2) = 243% = gain from 2 targeted recombinations

Recombination & genetic maps

Background information: When 100% single crossover occurs between a pair of genes, 50% of the gametes will be recombinant:

- The ratio of 1 crossover per ½ gamete (2 crossovers per recombinant gamete = 50% recombination rate) is a basic feature of recombination, and the basis for measuring the distance between genes.
- I.e., the frequency of recombinant gametes reflects one half the number of recombination events that occur. Recombination frequency = ½(crossover) frequency.
 - I.e., 2(recombination %) = CO

- E.g., a 9.3% frequency of recombination comes from an 18.6% frequency of crossing over.
- Thus 50% normally defines the upper limit of recombination
 - o 2 genes with 50% recombination are said to be unlinked
- 1% recombination = 1 map unit = 1cM. 50 map units = segment of chromosome where 1 CO occurs per meiosis
- Based on this, the total map length can be determined as the number of chiasmata × 50.

Figured out by Sturtevant, while he was an undergraduate student at Columbia University

Alfred Sturtevant

"In the latter part of 1911, in conversation with MORGAN . . . , I suddenly realized that the variations in strength of linkage, already attributed by MORGAN to differences in the spatial separation of the genes, offered the possibility of determining sequences in the linear dimension of a chromosome. I went home and spent most of the night (to the neglect of my undergraduate homework) in producing the first chromosome map."

Alfred Sturtevant, http://www.nap.edu/readingroom/books/biomems/asturtevant.html

3-point test cross

Data from Hutchison, 1922

Parents: C/C sh/sh Wx/Wx ★ c/c Sh/Sh wx/wx (purple; shrunken; starchy) (colorless; full; waxy)

B

Figure 1. Nannas & Dawe, 2015

\mathbf{F}_{1} **x tester:** C/c sh/Sh Wx/wx \times c/c sh/sh wx/wx

(purple; full; starchy)

(colorless; shrunken; waxy)

Measuring the distance

Kernel Phenotype	F ₁ gamete genotype	Number
Purple, shrunken, starchy		2538
Purple, shrunken, waxy		601
Purple, full, waxy		116
Purple, full, starchy		4
colorless, full, waxy		2708
colorless, full, starchy		626
colorless, shrunken, starchy		113
colorless, shrunken, waxy		2
Total		6708

F₁ gamete Number Kernel Phenotype genotype Purple, shrunken, starchy 2538 colorless, full, waxy 2708 Purple, shrunken, waxy 601 colorless, full, starchy 626 Purple, full, waxy 116 colorless, shrunken, starchy 113 Purple, full, starchy 4 colorless, shrunken, waxy 2 6708 Total

Next, determine genotype of F1 gametes for each gamete & assign categories. The least frequent class is the DCO

Here is the F2 data, and then sorted by class:

Kernel Phenotype	F ₁ gamete genotype	Number	
Purple, shrunken, starchy	C - sh - Wx	2538	5246
colorless, full, waxy	c – Sh – wx	2708	Parental types
Purple, shrunken, waxy	C - sh - Wx	601	1227
colorless, full, starchy	c – Sh – Wx	626	SCO : sh – Wx
Purple, full, waxy	C - Sh - wx	116	229
colorless, shrunken, starchy	c – sh – Wx	113	SCO : c - Sh
Purple, full, starchy	C - Sh - Wx	4	6
colorless, shrunken, waxy	c – sh – wx	2	Double cross over
Total		6708	,

Next, calculate gene-pair distances:

Parents: C/C sh/sh Wx/Wx	×	c/c Sh/Sh wx/wx
(purple; shrunken; starchy)		(colorless; full; waxy)

sh – Wx	$\frac{1227+6}{6708}x\ 100 = 18.4\%$
C – sh	$\frac{229+6}{6708}x\ 100 = 3.5\%$
C – Wx	$\frac{229 + 1227}{6708} x \ 100 = 21.7\%$

It is now possible to determine gene order:

- Longest = furthest apart = C & W
- Means *sh* must be in the middle

PBGG 8890

Accounting for unseen DCOs

• There could be DCOs that are undetected, particularly in the longer Sh-Wx interval.

			Map distances		
	sh – Wx	$\frac{1227}{6708}x\ 100 = 18.291\%$	18.291 + 0.089 = 18.38%		
	C – sh	$\frac{229}{6708}x\ 100 = 3.414\%$	3.414 + 0.089 = 3.503%		
	C – Wx	$\frac{6}{6708}x\ 100 = 0.089\%$	18.291 + 3.414 + 0.089 + 0.089 = 21.883%		
c	.	>sh	<i>W/x</i>		
C	3.5 cN	Λ	18.4 cM		
	*·····	→21.7 cM Measured map dis	tance		
	◆21.9 cM ◆ Best estimate of true map distance				

Interference

Sturtevant, 1913; Muller, 1916; McPeek and Speed, 1995

Chiasma, position, or chromosome interference:

- The number and position of crossovers are not independent of the numbers and locations of crossovers in other regions
- First observed by Sturtevant,1913

 Called it crossover homeostasis as lengths more regular than expected by chance.
- Muller 1916 [Amer Nat 50:193-434], coined 'interference'
 - Mather, 1937, termed the process as seriation:
- The process can be quantified as follows:

Interference = 1 - coefficient of coincidence, where

$$\frac{Observed}{Expected} = coefficient of coincidence$$

So back to the data of Hutchinson, 1922:

- Observed DCOs = 6
- Expected DCOs = 3.503% x 18.38% = 0.0059
 - 0.0059 x 6708 = 42.93

$$\frac{Observed}{Expected} = \frac{6}{42.93} = 0.139 = coefficient of coincidence$$

Chromosome length

Interference = 1 - CC = 1 - 0.139 = 0.86 = 86%

- Coincidence coefficients < 1 = positive interference, as 1 crossover decreases the occurrence of another.
- The magnitude of interference varies both within and between bivalents.
- Interference is not found in all species.
- Mapping functions factor in interference

2, 3, and 4-strand DCOs

Chromatid interference:

- A crossover between a pair of chromatids inhibits the occurrence of an adjacent crossover between this same pair of chromatids
- Does not happen often and is difficult to observe, requiring a pair of linked genes to detect it
- Expected chromatid crossovers in the absence of positive interference:

A 2-plane model used for clarity (not to endorse the 2 plane model!)

		Actual	Observed
2-strand DCO	A B	NCO	
A B		DCO	NCO
a		DCO	NCO
a b	a b	NCO	
3-strand DCO	A B	NCO	
A B A B	A b	SCO	500/ 00
ab	a b	DCO	50% 00
a	a B	SCO	
3-strand DCO	A b	SCO	
A B A B	A B	DCO	50% CO
ab	a B a b	SCO	50% 00
a b		NCO	
4-strand DCO	A b	SCO	
AB	A b	SCO	100% CO
a b	a B	SCO	
a b	a B	SCO	

DCO graphics from http://www.mun.ca/biology/desmid/brian/BIOL2250/Week_Five/CXORF.jpg

- As long as the frequency of 2-strand DCO = that of 4-strand DCO, recombination = 50%
- If 2-strand DCOs are more frequent, it would give the appearance of less crossover
- If 4-strand DCOs are more frequent, it would
 - Give the appearance of negative chromatid interference
- It is the only time that cross over frequency will be greater than 50%
 - Coincidence coefficients > 1

Interference vs chromosome position

Sherman and Stack, 1995

The graph shows the predicted vs the observed double crossovers in the long arms of tomato

chromosomes.

 Positive interference is occurring in the ≤ 0.1 and the 0.5 - 1.0 intervals (ie, below the line)

• and/or negative interference in the 0.1 - 0.5 interval (ie, above the line)

• means that 4-strand DCO's can happen in the middle of long chromosomes.

Xmata vs recombination maps

Sherman and Stack, 1995

In addition to other problems, note discrepancies in maps calculated in different ways. Data from tomato:

Chromosome	Length based on xma	Length based on classical map	Length based on molecular map
1	124.0	161	131.5
2	104.0	74	124.2
3	105.0	111	126.1
4	94.5	89	124.6
5	83.5	55	97.4
6	86.5	113	101.9
7	88.5	71	91.1
8	84.0	67	96.9
9	79.0	62	111.0
10	83.0	132	90.1
11	83.0	97	88.0
12	79.5	31	93.1
Total	1094.5	1063	1275.9

NOTE: Predicted maps based on Xma frequency are usually longer than classical maps, which do not have enough markers to detect all the CO that have taken place.

Darlington, 1934 Predicted that classical and xma maps would converge as more markers became available, permitting all DCOs to be detected.

Nilsson et al., 1993

Chrom-		Genet	ic length	(cM) estir	mated from		
osome of maize	Chiasma		Linkage data				
	Counts	1934	1950	1976	1990 classical	1990 molecular	
1	187	102	156	161	176	238	
2	163	58	128	155	155	229	
3	150	92	121	128	167	194	
4	148	80	111	143	137	174	
5	148	44	72	87	107	235	
6	110	52	64	68	78	169	
7	123	50	96	112	112	131	
8	123	20	28	28	42	173	
9	110	52	71	138	140	132	
10	98	68	57	99	95	115	

Note that the molecular map is longer than predicted. This has happened for other crops as well.

Why are molecular maps longer than chiasma maps?

Species	25	Estimated CO/meiosis			
	211	xma counts	molecular maps		
Brassica campestris	20	10.0-18.5	37.0		
Brassica oleracea	18	12.8-14.8	22.2		
Hordeum vulgare	14	13.5-15.6	22.7		
Lactuca sativa	18	14.6-20.7	28.1		
Lycopersicon esculentum	24	16.2-17.0	25.5		
Oryza sativa	24	18.9-27.6	36.7		
Pisum sativum	14	10.3-18.1	29.3		
Solanum tuberosum	12/24	13.2-14.1	20.7		
Zea mays	20	17.4-25.0	35.8		

Xma counts based on % meiosis only, while molecular maps based on both % and & meiosis
In tomato, & map is 18% longer than % map, so the combined map should be 9% longer, yet it is 30% longer

- Errors in counting xma, scoring markers
- Sampling of different genotype
- Low number of meioses sampled
- Mapping functions assume undetected double COs exist, and lengthen map distances accordingly
- Mapping functions were designed for species with multiple crossovers, such as the grasshopper at right, or yeast, below

CO's assumed in mapping functions

Figure 2. Diplotene in male Meadow grasshopper, Chorthippus parallelus

Figure 3. Crossovers in yeast, as determined by allele detection on a DNA chip

How common are DCOs in plants?

Mistletoe

Maize- Anderson et al. 2003

- Based on above photos, the maximum appears to be ~ 1 CO per arm
- Note that various xmta are present in the grasshopper chromosomes, while mostly terminal ones are present in the plant chromosomes.
- Corroborated by molecular F2 maps:

Tanksley et al., 1989

DCO

= 11%

Sherman and Stack, 1995

Counted xmta in 5228 paired chromosomes of tomato

- 40% had 1 CO per chromosome
- 49% had 2 CO per chromosome, ie, 1 per arm
- 10% had 3 CO per chromosome, ie, 1 arm with 1 CO, and 1 arm with 2 CO
- 1% had 4 CO per chromosome, ie, 2 per arm

Terminalization

Darlington 1935

In the 1930's, Darlington decided multiple CO's were present but got terminalized in order to explain discrepancy.

He was wrong.

Localized Chiasmata

Darlington was looking at Localized chiasmata

 In some species, chiasmata occur preferentially in one part of the chromosome, such as next to the centromere, as in the examples below (Table from John, 1990):

PMC of *Paeonia lutea*, 2n = 10 with distal chiasmata. John, 1990

Species:	<u>Ch</u>	iasmata Site	% Proximal Site	
	Proximal	Interstitial	Distal	
Trillium kamtschaticum				
Clone 1	466	5	2	98
Clone 2	407	33	20	89
Allium fistulosum	2056	41	40	96

• Most frequently in crops, localized chiasmata occur at the end distal to the centromere, as in peony example.

Recombination is variable

Data from Bridges, from the Drosophila sex chromosome Order of genes = y - pr - w - rst - fc - centromere

Gene pair:	# Bands:	Map distance:	%CO / band
y — pr	57	0.8	0.014
pr – w	18	0.7	0.038
w – rst	2	0.2	0.100
rst – fc	2	1.3	0.650

Recombination hotspots

The point is that some spots on the chromosome are particularly prone to recombination, including within genes.

Yao et al., 2002

Example across 5 loci

Luo et al., 2019

Hot spots are in the gene-rich ends of the chromosome, and can vary between % and &

Recombination can vary within a gene, with hotspot near ATG

Patterson et al., 1995

This observation has since been

generalized, and there is a tendency of hotspots to be near start and stop codons:

Preferred recombination spots Wijnker et al., 2023

Recombination hot spots do not occur at random. Preferred sites have

- GC content 30-50%
- Undermethylated
- Promoters/terminators

As shown below, there is also a preferred sequence, and they are associated with nucleosome exclusion sites.

Nucleosome exclusion sites are defined as (A)₁₀ and ((GC)₃NN)₃

Model of CO locations Lloyd, 2022

"Crossovers are primarily located in open chromatin associated with gene promoters and terminators with low nucleosome occupancy"

Yelina et al, 2015. CG methylation suppresses recombination. Is it methylation as such, or the conformational changes it induces - ie, heterochromatin?

Physical vs genetic maps

Because of all interferences with crossing over, physical maps do not equal linkage maps:

- Again, note that favorable alleles cannot be recombined together in the areas with no recombination
- I.e., these areas are not amenable to breeding

Heslop-Harrison, 1991

PBGG 8890

Genotype

Williams, Goodman, and Stuber, 1995

Studied chromosome 1L of maize

- Looked at individual maps vs composite maps
- Found wide differences in CO frequency
- Notice that composite maps are derived from formulae which assume no changes in recombination frequency
- Composite maps are inaccurate for estimating target gene proximity in cloning projects
- Supposedly, 1 cM in maize = 1460 kb.
 - With this ratio *amp1* to *mdh4* distance would range from 8720 to 24,800 kb
- Similar genotypic effects also seen in other species:
 - Arabidopsis (Sanchez-Moran et al, 2004)
 - Rye (**Rees, 1961**)
 - Barley (Säll, 1990)

The adjacent table compares this in more detail

• The genotype effect probably includes some effects from all other factors.

MAP	amp1 - mdh4	mdh4 - pgm1	pgm1 - phi1	phi1 - dia2	dia2 - acp4	Total cM ×1000
Wendel (1989)	15.0	19.0	25.0	14.0	13.0	86.0
Composite	9.7	15.9	17.4	14.4	12.7	70.2
Composite US genotypes	12.4	19.3	15.0	9.3	10.5	66.5
B73	8.5	16.2	11.7	11.6	9.4	57.4
Gourdseed	6.9	17.5	19.2	11.1	12.3	66.9
Composite Exotic genotypes	11.8	19.1	17.6	15.7	12.9	77.2
NC300	12.1	17.4	18.9	14.7	15.0	78.1
Serrano	13.0	25.1	20.6	22.8	13.0	94.5
Tepecintle	11.0	17.9	12.6	20.9	12.3	74.7
Tuxpeño	12.5	21.2	21.6	8.0	15.1	78.3
Confite Puneño	16.7	23.0	18.7	7.1	11.5	76.9
Cónico	6.3	17.7	11.1	19.1	20.4	74.6
Coroico	15.4	13.2	15.6	19.9	10.8	74.9
Costeño	10.4	24.0	22.2	15.0	9.0	80.6
Cuban Flint	8.8	13.9	17.0	17.8	12.3	69.6
Composite High	12.5	21.2	20.3	14.9	14.3	83.2
Composite maize × teosinte	4.8	6.3	18.6	12.7	13.5	56.0
Balsas teosinte	14.0	9.3	24.5	12.2	9.8	69.8
Zea diploperennis	0	3.9	11.8	15.2	18.1	49.0
Central Plateau teosinte	0	5.6	20.7	10.6	12.7	49.7

Crossover sites can be altered

Jones, 1967

Crossed *Secale dighoricum* with *Secale turkestanicum*, and got an F2 segregant with an altered pattern of chiasma formation:

Chiasmata	Parental		F	2
Distribution:	Observed Expected		Observed	Expected
Distal	546 192		199	134
Interstitial	30 192		132	134
Proximal	0 192		71	134
Total	576		40)2

- Rye normally has one crossover per chromosome arm, and it is localized distally to the centromere
- Segregants varied for location of crossover (notice random number for interstitial region), multiple crossovers, and non-serial crossovers.

Factors Affecting Recombination

Landmarks/Chromosome Structure

a. The centromere

Sherman and Stack, 1995

The centromere suppresses crossing over in the immediate vicinity

 Found only 7 out of 9562 crossovers occurred within 10% of the physical distance from the centromere. An example for chromosome 1 is shown

Location of COs in chromosome 1 of tomato

b. Heterochromatin

Crossing over in euchromatin and heterochromatin of tomato (Sherman & Stack, 1995):

		Eu	uchromat	tin	Hete	erochron	natin		
C-some	Length (µm)	Length (µm)	Ave no. RNs / II RNs / µm		ength Ave no. μm) RNs/II RNs/μn		Length (µm)	Ave no. RNs / II	RNs / µm
1	30.0	22.5	2.44	0.112	7.5	0.04	0.005		
2	21.3	17.1	2.05	0.122	4.2	0.03	0.007		
3	23.1	16.0	2.07	0.131	7.1	0.03	0.004		
4	20.8	13.7	1.87	0.138	7.1	0.02	0.003		
5	16.2	9.5	1.63	0.168	6.7	0.04	0.006		
6	18.5	12.9	1.69	0.132	5.6	0.04	0.007		
7	18.5	11.6	1.75	0.155	6.9	0.02	0.003		
8	18.5	11.9	1.66	0.143	6.6	0.02	0.003		
9	16.2	10.0	1.58	0.160	6.2	0.004	0.0006		
10	16.2	10.0	1.64	0.160	6.2	0.02	0.003		
11	16.2	9.7	1.63	0.165	6.5	0.03	0.005		
12	14.0	8.2	1.54	0.183	5.8	0.05	0.009		

Heterochromatin suppresses crossing over. Crossing over rarely occurs in heterochromatin (i.e., repetitive DNA) itself.

c. The NOR

COs in *Eremurus spectabilis* Upcott, 1936 via John, 1990

The NOR also suppresses crossing over in its vicinity.

The figure above shows this phenomenon in *Eremurus spectabilis* (after Upcott, 1936)

- Note: This phenomenon has not been found to be universal- eg, Anderson et al., 2003
- The short arm of chromosome 2 (red arrow above) does not pair, and if it pairs, it does not recombine.
 - It is where the NOR is, so there might be a causal relationship.

d. Telomeres

Sherman and Stack, 1995; Barton et al, 2008

- Subtelomeric heterochromatin suppresses recombination
- Adjacent euchromatin recombines at 2x overall rate
- Also note telomere in tomato above, showing no CO in the telomere of the long arm of chromosome 2

Rhoades, 1958

• Effects of insertions/deletions

oGI	Lg		Α	normal	зL
oGI	Lg	Α		Df3	ЗL

Cross	GI – Ig	Lg – A
N3L / N3L	28.0	30.6
N3L / N3L*	29.0	28.2
N3L / D3L	35.1	12.8

Marcus Rhoades 1903 - 1991

An indel during pairing

Notice that recombination is increased in the Gl-Lg region, but decreased in the Lg-A region.

• * In this case, a duplication in chromosome 9 elsewhere in the cell affects crossing over in chromosome 3!

Yg C Sh Bz Wx ____ normal 9S Yg C Sh Bz Wx ____ Tp 9S

Poor pairing in the heterozygote reduces recombination across the chromosome

Cross	Yg – Sh	Sh – Wx
N9 / N9	21.0	17.0
Tp9 / N9	2.0	2.0
Тр9 / Тр9	29.0	18.0

Also, cryptic structural differentiation (CSD) is present.

- Deters introgression and increases linkage drag
- Today called structural variation

f. Chromosome length

Rees & Durant, 1986; Sherman & Stack, 1995; Anderson et al., 2003

Table below: rows show the within-species effect, depending on chromosomal DNA content, or in other words, length: Longer chromosomes have more DCOs

The following data a	re from tomato (She	rman and Stack, 1995):	
Chromosome	Mean Length	CO/Chromosome	Unit Length per CO	B Total SC set length (um)
1	30.0	2.48	12.10	2
2	21.3	2.08	10.24	
3	23.1	2.10	11.00	5-
4	20.8	1.89	11.00) -
5	16.2	1.67	9.70	5 <u>a</u> 1.5
6	18.5	1.73	10.69	
7	18.5	1.77	10.45	Dif F
8	18.5	1.68	11.01	0.5
9	16.2	1.58	10.25	0.0 +
10	16.2	1.66	9.75	0 5 10 15 20 25 30 35 40 45 50 55
11	16.2	1.66	9.76	Figure 5. Anderson et al, 2003
12	14.0	1.59	8.80	

- Longer chromosomes have more CO, but not enough to compensate for the longer length.
- Therefore, CO/bp of DNA must vary between chromosomes of different lengths
 With longer chromosomes having less COs per unit length.
- Within a species, chromosome length explains 96% of differences in CO
 - This is shown in the graph at above right, from Anderson et al., 2003.

Table from John, 1990:	2C DNA (pg)	DNA co with	ntent (p means	g) of II of:
Species		1.5 xta	2 xta	3 xta
Lathyrus clymenum	13.43	1.0	1.4	2.2
L. cicero	14.64	1.3	1.8	2.8
L. sativus	16.78	2.1	2.7	3.8
L. tinitanus	22.08	2.4	3.1	4.4
Lolium perenne	4.16	0.36	0.8	
L. temulentum	6.23	0.51	1.2	

Rees & Durrant, 1986

- In general, as DNA content increases, the CO/pg decreases
- Minimum CO is always 1 (unless achiasmate meiosis is involved, as in chromosome 4 of Drosophila)

But, while the longest chromosome has the most COs, the increased CO in longer chromosomes is not enough to compensate for longer lengths

- Therefore: Long chromosomes increase linkage within a species
- This holds across species

g. Arm length Sherman and Stack, 1995

In subacrocentrics, COs occur preferentially on long arms

- If there is only 1 CO, then it is always in the long arm
- Eg, chromosome 1 of tomato. 1S is 17% of length of 1L
 - \circ Thus, expect single CO to occur on 1S 17% of time \rightarrow not the case

Submetacentrics: Single COs were sometimes on the short arm, but not proportionately

Metacentrics: There is preference for one arm over the other

- If a second crossover occurs, 2nd CO takes place in 2nd arm more often than is expected based on length.
- Occurrence of a CO in an arm drives the 2nd one into the other arm
- Synapsis always begins in long arms or given arm of metacentrics

Bottom line: short arms have tighter linkage

Anderson et al., 2003. The effects of chromosome arm length on xmata in maize

h. Knobs

Naranjo and Lacadena, 1980; Stack et al., 2017

- Durum wheat × rye: AABB × RR → number of xma on 1R depends on telomeric heterochromatin
- Note: this phenomenon is not universal (eg, **Anderson et al., 2003** in maize. See eg from **Stack et al., 2017** below, who looked at recombination nodules that formed in a knob)

i. MITEs (skip) Gaut et al., 2007

NOTE- since mites insert preferentially into euchromatin, this effect may reflect recombination in euchromatin vs heterochromatin than an actual MITE effect per se.

j. Retrotransposons Dooner & He, 2008

Key thing to notice is the cM distance in the 5 intervals encompassing bz and stc1 differ in McC x B73 crosses compared to McC x W22.

Heterozygous retrotransposon insertions halves the genetic distance between bz1 & stc1

bz1 & stc1 are at half the genetic distance in B73, due to reduced CO

Basically, an indel effect (ie, intrachromosomal effect)

k. Gene density Fengler et al., 2007

In general, recombination outside of the centromeric area, is correlated with gene density.

Maize Chromosome	Genic sequences	Genetic length (cM)	Correlation between genes and recombination
1	3357	1137.9	0.96
2	2619	725.3	0.95
3	2478	829.9	0.90
4	2286	750.2	0.83
5	2618	676.7	0.93
6	1721	548.7	0.92
7	1757	618.4	0.85
8	1970	632.0	0.77
9	1608	638.7	0.93
10	1432	533.7	0.78
total/Ave	21,846	7090.0	0.87

PBGG 8890

I. Alien introgressions

Liharska et al., 1996

Looked at recombination around Mi gene introgression between tl and yv loci.

• The largest introgressed segments had 6x lower recombination

Effect of CO variability on linkage maps

1 2 3 4 5 6 7 8 9 10 11 12

Each pair of horizontal lines represents 1 cM

Basic take-home is that the physical distance represented by 1 cM can vary widely

Sherman & Stack, 1995

Demarly, 1979

Concept that the unit of inheritance in plants is not a single gene

Instead it is a block of linked genes, he called a linkat

Nowadays called a haplotype

PBGG 8890

Factors Affecting Recombination

Genetics

A. Gender - Heterochiasmy

John 1991; review by Girault et al, 2011

Crossing over is absent in % Drosophila, & silkmoth (ie, XO, so no pairing partner!)

- The heterogametic sex tends to have less crossing over
- Differences in crossover frequency have been found between the eggs and the pollen from the same plants of *Listeria*, *Pisum*, *Primula*, *Zea* & *Arabidopsis*
- * R = random; P = proximal

de Vicente & Tanksley, 1991

The first to actually document heterochiasmy in plants, using RFLP markers.

- Map distance reflects recombination in each parent

 The % parent always had less recombination for all chromosomes (0[= centromere)

	Xma	freq.	D	ist'n
	ę	്	ę	്
Fritillaria martagon	41.0	36.3		
F. meleagris	37.8	24.8		
F. longiflorum	31.4	27.3		
Allium nigrum	16.9	21.9	R*	R
A. consanguineum	17.5	21.9	R	R
А. сера	17.9	22.4	R	R
A. kachrooi	15.0	12.9	P*	R

Li et al, 2019

PBGG 8890

Single cell maize gametophyte sequencing Male = 19.3 CO/µspore Female = 12.4 CO/megaspore

Zickler & Kleckner, 1999; Koul & Nagel, 2002; Giraut et al, 2011; Lloyd, 2022

- "Thus, along euchromatic portions of genomes, loop lengths (in kb) may be relatively constant."
- "25–30 loops per chromatid per μm of chromosome axis."
 - Varies 2x
- 1. "Changing loop size changes length of synaptonemal complex"

Koul and Nagel, 2002:

- most legumes: increased xmata in male
- most grasses: increased xmata in female
 these also differed in their distribution pattern
- not all spp showed difference
 - o eg, fava beans, beans, and rye

Рора. 2011

DNA loops on bumblebee pachytene chromosomes. Zickler & Kleckner, 1999

Säll & Nilsson, 1994

Found no sex differences in barley:

♂ = 10.8 ± 10.7

So the phenomenon is not universal

Figure 6. Comparison of CO in % (dotted) and & (solid) meiosis of barley

B. B chromosomes

B. B chromosomes	Тр9/Тр9	Yg-C	C-Wx
John, 1990	+ 0 B	28.8	17.7
B chromosomes also influenced the location	+ 1 B	12-13	37.0
 Of the crossovers B chromosomes had no effect in N9/N9 	+ 2 B	12-13	40.4
stocks	+ 3 B	12-13	42.0

• Wheat × Aegilops speltoides or mutica → B chromosome from Aegilops can normalize pairing between homologues, similar to Ph1 effect

•	Same is true for Lolium-Festuca hybrids for Lolium-derived B chromosome, and whether the same set of the same	heat × rye

	Mean chiasmata/cell									
Species:	0B	1B	2B	3B	4B	5B	6B	7B	8B	10B
Crepis capillaris	t 4.08	3.90	4.65	4.68	5.33					
Puschkinia libanotica	t 9.07	10.82	11.70	11.62	13.80					
Lolium perenne	↓ 11.93	11.21	10.00							
Festuca mairei	t 18.87	20.95	22.85	26.25	28.00					
Zea mays	t 1 8.50		19.50	19.70	19.80		22.53		23.80	19.80
Secale cereale -inbred	↓ 14.85	13.43	13.22	13.29	12.64	12.86	13.20	<mark>12.64</mark>	13.03	
- wild	t 13.20	15.12	16.57	17.78	18.40					
Listeria ovata - PMC	t 26.9	28.9	28.2	30.3	29.1					
- EMC	t 30.3	32.6	31.3	32.5	32.7					

C. Desynaptic mutants

Ji et al., 1999

Desynaptic mutants reduce recombination. Not surprising as homologs separate before completion of the COs

-Looking at progeny of *dy* plants, found one homozygote (dy14) where recombination was reduced, without any effect on chiasma formation.

D. Zygosity

Robbins et al., 1995

Case I: homozygosity increases CO -Eg, petunia, (n=7)

- 135 petunia wide-hybrid transgenics 47 T-DNAs linked to Hfl or Fl
- 19 were 1 cM from *Hfl* or *Fl*
 - \circ nonrandom insertions? \rightarrow no evidence in any species
 - o lack of recombination in wide hybrids?
- To distinguish, measured recombination in inbreds
 - recombination around Hfl increased 3x
 - recombination around Fl increased 12 x
- same is true in wheat

Rees & Thompson, 1956

Case II: homozygosity decreases CO

... rye \rightarrow reduced chiasma frequency (right) RI pea map shorter than F2 pea map (below)

Note that pea, petunia and wheat are normally selfers, while rye is normally an out crosser.

Note that the zygosity effect appears to be chromosome-specific in some species

Figure 7. Chiasmata/cell in rye

Knox & Ellis, 2002

Comparison of the length of maps for F2 and RI populations of the same cross in pea

Boideau et al, 2024

E. Allotriploidy

- Increased recombination in pericentric region
- Reduced interference
- Effect disappears in allo4x plants

X axis = chromosome

Black = centromere

heterochromatin

Dark gray = pericentric

F. Species

Price et al., 1993

Represents the sum total of genetic & structural differences that accumulate between species

	Distance (cM)			
Interval	Tomato	Pepper		
CT268 - TG273	23.0	5.7		
TG197 - TG158	52.2	34.6		
r458 - TG31	2.8	5.0		
TG48 - CD30A	15.6	6.0		
CT128A - CT166	28.9	20.3		
TG366 - TG244	86.3	75.3		
TG264 - TG574	15.5	15.4		
TG363 - CD64	18.3	23.2		
TG623 - TG379	49.0	0.0		
TG232 - TG253	46.3	51.9		
TG20 - TG499	10.6	9.2		
TG201 - TG496	10.6	9.2		
TG47 - TG400	6.4	13.7		
TG618 - TG296	39.9	0.0		
TOTAL:	441.2	282.0		

G. Genes

Robert, Farcy, & Cornu, 1991

	rm1/rm1	Rm1/rm1	Rm1/Rm1
Hf1-Lg1	15.3%	26.9%	
An2-Rt	0-0.5%	6%	26%

- *Rm1* gene on chromosome II of Petunia, an incompletely dominant gene that tends to increase recombination, especially for tightly linked loci.

- Increases recombination for chromosomes 1, 2, 5, 6, and 7

- Decreases it for chromosome 3; does not affect chromosome 4.

- For the following gene pairs on chromosome 1:

Hf1-Lg1, where *Hf1* = purple vs. salmon corolla & *Lg1* = green vs. light green leaves An2-*Rt*, where An2 = High vs. low anthocyanin content & *Rt* = purple vs. salmon corolla

I. Helicases – FANC & Re4

Crismani et al., 2012

The FANCM gene in arabidopsis

- Searched for recombination mutants by finding mutants that could complement *zip4* mutants. Mutants have 100-85% fewer COs.
- Used fluorescent protein transgenes linked together to measure recombination in different chromosome intervals
- The thing to notice is how *fancm-1* restores crossing over in *zip4* mutants and supersedes
 WT CO levels.
- Overall, there are far more Double Strand Breaks than there are COs
 - Eg, arabidopsis has ~230 DSBs but only ~10 Cos
- Helicases appear to play a role in keeping COs down
 - Ie, are anti-CO factors
- Silencing of helicases could increase CO frequency in crops to facilitate breakage of old linkages

Serra et al, 2018

- Hel10 procrossover E3 ligase gene
- Req4A & B affect interfering and non-interfering crossovers
- Adding Hel10 increases CO coincidence (ie, decreases interference)
- Removing the Req4 genes increases recombination
- Hel10 Req4 is synergistic

Mieulet et al., 2018

KOs of FANC are somewhat synergistic with KOs of req4 across species

al, 2021

Regulator of telomere elongation helicase

PBGG 8890

Capilla-Pérez et al, 2024

There are two types of crossovers

- Class I
 - The most common
 - Subject to interference
 - Limited by dosage of
 - HEI10
 - Phosphatase X1
 - Synaptonemal proteins ZYP1/SCEP1/SCEP2
- Class II
 - Limited by 3 protein complexes
 - TOP3/RECQ4AB/RMI1
 - FANCM
 - FIGL1/FLIP
- Got a 6x increase in recombination \rightarrow the highest rate yet achieved

•

Number of COs per F2 plant

PBGG 8890

Factors Affecting Recombination

Environment

1. Age

Bridges, 1915

• 2nd brood of progeny from a female had lower recombination rates

2. Temperature

Dowrick, 1957

°C	Time (h)	% interstitial xmata	Total xmata (100 PMC)	°C	Time	% interstitial xmata	Total xmata (100 PMC)
control		2.3	743	control		2.2	757
20	12	4.8	773	34	12	8.8	832
	24	6.2	836		18	18.9	984
	48	11.9	847		24	21.6	1006
	96	15.3	842		48	12.1	860
	192	13.7	883		96	0.7	431
control		2.0	707	control		2.3	743
27	12	7.4	757	39	18	16.8	841
	24	15.8	845		24	41.2	1152
	48	17.4	849		27	29.4	961
	144	17.3	851		30	19.3	787
					48	0	72

First reported by Plough (1917) on Drosophila chromosome # 2 [J. exp. Zool. 32:147-209].

- Extensively studied by Dowrick, 1957, in Tradescantia
 - Note that effect depends on temperature
 - Increase in number & location of chiasmata

Francis et al., 2007

Effect confirmed in arabidopsis by measuring recombination between linked transgenes

- Also seen in barley [Powell & Nilan, 2000. Crop Sci 3:11-13] and
- Faba bean [Berkemeir & Linnert. 1987. Biol. Zentralbl. 106:219-230.]

3. Stress

Bennett & Rees, 1970

Starvation, metal chelates, antibiotics and radiation have all been found to increase recombination, while low calcium concentrations decrease it. Here are some data on the effects of phosphorus.

Sinha & Helgason, 1969

Lethal genes *Xantha* (*xc*) and *albino* (*an*) linked in repulsion near centromere.

• Thus F2 segregates 9:3:3:1 (9:7) for lethality

- The use of
 - Actinomycin D
 - Diepoxybutane
- Increases recombination distance to 15.1%

4. Position on flower head

Francis et al., 2007

Flowers on the main stem exhibited less recombination than those on the first or second inflorescence branches.

Recombination was measured between a pair of transgenes.

A NOTE OF CAUTION Barth et al, 2000

Looked at effect of sex, temperature and phosphate on recombination in arabidopsis

- Found an effect, but effect was not genome-wide
- Effect limited to specific chromosome regions

Manipulating Crossovers

Yanagira et al., 1992

Gene order: Wx - C - S-5 on chromosome 6 Note: today *javonica* is called tropical *japonica*

Where

- *wx* = glutinous endosperm
- *c* = chromogen
- *S-5* = compatibility locus

S-5 has several alleles

- *S-5^j* is found in *japonica* type rices
- *S-5ⁱ* is found in *indica* type rices
- *S*-5^{*n*} is found in the *javonica* type rices, & permits crossing to *indica* and *japonica* types.

The Wx-C distance = 22.9% in *japonica* × *japonica* ($S-5^{j} \times S-5^{j}$)

- 16.5% in *japonica* × *javonica* ($S-5^j \times S-5^n$)
- 30.3% in *javonica* × *indica* ($S-5^n \times S-5^i$)

When the *javonica* allele is backcrossed into *japonica (japonica*), japonica* behaves like *javonica*

- 16.1% in *japonica* × *japonica*^{*} ($S-5^{j} \times S-5^{n}$)
- 30.3% in *japonica*^{*} × *indica* ($S-5^n \times S-5^i$)

Esch et al., 2007

This concept has been verified in wheat, arabidopsis and maize, by studying RILs with different recombination frequencies

- 1 QTL on chromosome 1 in arabidopsis
- 2 QTLs on chromosome 3 in maize
- 1 QTL on chromosome 3B in wheat
- QTLs could explain up to 15% of observed variability in CO frequency

TET

Engineering recombination hotspots

Kuo et al, 2021

Strategies to remodel the crossover rate locally.

A cold spot region is enriched in nucleosome and silencing epigenetic marks, such as 5mCs methylation in all three contexts (CG, CHG, and CHH).

- Targeted recruitment of TET1 would remove silencing epigenetic marks, leading to decompaction of chromatin
- Targeted recruitment of SPO11 produces DSBs.
- 5mC Cytosine Nucleosome DNA в 634,000 bp 636,000 bp 638,000 bp 640,000 bp SPO11-1-oligos 44.64 REC8 Nucleosomes Genes -At3G02890 At3G02875 At3G02880 At3G02885 COs COs
- Meiotic DSBs are repaired by the homologous recombination pathway leading to the formation of NCO, NCO with gene conversion, or CO.

(B) Genome browser view of the crossover hotspot 3a (red arrowheads) on chromosome 3 of arabidopsis. SPO11-1-oligo (orange), REC8 ChIP-seq (green), nucleosome (MNase, dark blue) & gene organization (purple).

Kouranov et al, 2022

Mitosis. Engineer DSBs in the same spot in the F1. CO frequency is increased, but still get chimeras, as CRISPR not always gets the job done in the engineered cell, but after the cell has divided.

Limitations

Taagen et al., 2022

Compared

- WT recombination, vs increased recombination in the peri-centric area or increased recombination in the whole chromosome
- Random markers vs markers for deleterious alleles

• Markers in coupling vs repulsion

- Increased recombination is more effective for traits linked in repulsion than for those linked in coupling
- "Increased recombination is not beneficial for oligogenic traits"
- "The variance generated from increased recombination may not increase genetic gain"
- "The efficiency of increased recombination may depend on knowledge of QTL locations"