Breeding and linkage

Jeffrey Ross-Ibarra @jrossibarra

The need to break linkages

Young and Tanksley, 1989

Red blocks illustrate DNA segments introgressed from the wild species donor of the Tm-2 locus. Lots of linkage drag is present.

Significance of CO and its manipulation

Wijnker & de Jong, 2008

Increased recombination Tourette et al, 2019

Targeted recombination

Recombination & genetic maps

Alfred Sturtevant

"In the latter part of 1911, in conversation with MORGAN . . ., I suddenly realized that the variations in strength of linkage, already attributed by MORGAN to differences in the spatial separation of the genes, offered the possibility of determining sequences in the linear dimension of a chromosome. I went home and spent most of the night (to the neglect of my undergraduate homework) in producing the first chromosome map."

Photo: Alfred Sturtevant, http://www.nap.edu/readingroom/boo ks/biomems/asturtevant.html

3-point test cross

Data from Hutchison, 1922

Parents: C/C sh/sh Wx/Wx × c/c Sh/Sh wx/wx (purple; shrunken; starchy) (colorless; full; waxy)

(purple; full; starchy)

(colorless; shrunken; waxy)

Figure 1. Nannas & Dawe, 2015

Measuring the distance

Kernel Phenotype	F ₁ gamete genotype	Number
Purple, shrunken, starchy		2538
Purple, shrunken, waxy		601
Purple, full, waxy		116
Purple, full, starchy		4
colorless, full, waxy		2708
colorless, full, starchy		626
colorless, shrunken, starchy		113
colorless, shrunken, waxy		3
Total		6708

Kernel Phenotype	F ₁ gamete genotype	Number
Purple, shrunken, starchy		2538
colorless, full, waxy		2708
Purple, shrunken, waxy		601
colorless, full, starchy		626
Purple, full, waxy		116
colorless, shrunken, starchy		113
Purple, full, starchy		4
colorless, shrunken, waxy		2
Total		6708

Accounting for unseen DCOs

Interference

Muller, 1916; McPeek and Speed, 1995

Xa. Freq. Distribution

Chromosome length

2, 3, and 4-strand DCOs

A 2-plane model used for clarity (not to endorse the 2 plane model!)

		Actual	Observed
2-strand DCO	A B	NCO	
A B A B		DCO	
a		DCO	
a b	a b	NCO	
3-strand DCO	A B	NCO	
A B A B	A b	SCO	50% CO
a b	a b	DCO	50% 00
a	a B	SCO	
3-strand DCO	A b	SCO	
AB	A B	DCO	50% 00
ab	a B a b	SCO	
a b		NCO	
4-strand DCO	A b	SCO	
AB	A b	SCO	100% CO
a b	a B	SCO	
ab	a B	SCO	

DCO graphics from http://www.mun.ca/biology/desmid/brian/BIOL2250/Week_Five/CXORF.jpg

Interference vs chromosome position

Sherman and Stack, 1995

Xmata vs recombination maps

Sherman and Stack, 1995

Chromosome	Length based on xma	Length based on classical map	Length based on molecular map
1	124.0	161	131.5
2	104.0	74	124.2
3	105.0	111	126.1
4	94.5	89	124.6
5	83.5	55	97.4
6	86.5	113	101.9
7	88.5	71	91.1
8	84.0	67	96.9
9	79.0	62	111.0
10	83.0	132	90.1
11	83.0	97	88.0
12	79.5	31	93.1
Total	1094.5	1063	1275.9

Nilsson et al., 1993

Chrom-	Genetic length (cM) estimated from								
osome	Chiasma		Linkage data						
of maize	Counts	1934	1950	1976	1990 classical	1990 molecular			
1	187	102	156	161	176	238			
2	163	58	128	155	155	229			
3	150	92	121	128	167	194			
4	148	80	111	143	137	174			
5	148	44	72	87	107	235			
6	110	52	64	68	78	169			
7	123	50	96	112	112	131			
8	123	20	28	28	42	173			
9	110	52	71	138	140	132			
10	98	68	57	99	95	115			

Why are molecular maps longer than chiasma maps?

Creation	25	Estimated CO/meiosis		
Species	Zn	xma counts	molecular maps	
Brassica campestris	20	10.0-18.5	37.0	
Brassica oleracea	18	12.8-14.8	22.2	
Hordeum vulgare	14	13.5-15.6	22.7	
Lactuca sativa	18	14.6-20.7	28.1	
Lycopersicon esculentum	24	16.2-17.0	25.5	
Oryza sativa	24	18.9-27.6	36.7	
Pisum sativum	14	10.3-18.1	29.3	
Solanum tuberosum	12/24	13.2-14.1	20.7	
Zea mays	20	17.4-25.0	35.8	

CO's assumed in mapping functions

Figure 2. Diplotene in male Meadow grasshopper, Chorthippus parallelus

Figure 3. Crossovers in yeast, as determined by allele detection on a DNA chip

How common are DCOs in plants?

Barley

Maize- Anderson et al. 2003

Tanksley et al., 1989

Figure 4. Solanum lycopersicon x S. pennelli

Sherman and Stack, 1995

• Counted xma in 5228 paired chromosomes of tomato

Terminalization

Darlington 1935

Localized Chiasmata

PMC of *Paeonia lutea*, 2n = 10 with distal chiasmata. John, 1990

Species:	<u>Ch</u>	% Proximal Site		
	Proximal	Interstitial	Distal	
Trillium kamtschaticum				
Clone 1	466	5	2	98
Clone 2	407	33	20	89
Allium fistulosum	2056	41	40	96

Recombination is variable

Data from Bridges, from the *Drosophila* sex chromosome Order of genes = y - pr - w - rst - fc – centromere

Gene pair:	# Bands:	Map distance:	%CO / band
y – pr	57	0.8	0.014
pr – w	18	0.7	0.038
w – rst	2	0.2	0.100
rst – fc	2	1.3	0.650

Recombination hotspots

Yao et a	al., 1	2002	(6 kb									
Proximal				b (E(2) 1.0 kb	E(3)	6.2 kb	Machiavel	li					Distal
php10080	1) 3'	Al-LC	TD1		mandias	QZ684	yz1		x1	5'		_#	3' Sh2 5'
php10080	1) 3'	41::rdt 5	Z1001 TD1	QZ3470 1	_ IR _	$ \xrightarrow{1} \frac{1}{\sqrt{247}} $	25 9-10a5 yz1	ZH1384 HYx6	488L x1	5	2-32a2		sh2 sh2
Intervals	I	<i>itt</i>	ш	$\mathbf{I}\mathbf{V}_{1}^{T}\mathbf{V}_{1}^{T}$	VI	VII	VIII		X	XI	XII	XIII	XIV
Size (kb)	1.0	1.7	1.8		2.2	0.66	3.4	~35	6.2	~9.0	5.5	~66	1
Recombinant (n = 101)	S	1 <u>17</u>	s 1		<u>34</u> Class 2	_ 0	$\frac{2+38}{Class 6}$	1 1 Claiss 3	Class 4	1 0 1	0 .	1 Class 5	0
cM/Mb		6.9	0.77		11	1 1	8.2	~0.020	0.67	1	~0.00	87	1

Luo et al., 2019

Recombination can vary within a gene, with hotspot near ATG Patterson et al., 1995

Nucleosome exclusion sites are defined as (A)₁₀ and ((GC)₃NN)₃

Model of CO locations

Physical vs genetic maps

1105100 1101115011, 155

Crossover sites can be altered Jones, 1967

Secale dighoricum x S. turkestanicum

Chiasmata	Parental		F	2
Distribution:	Observed	Expected	Observed	Expected
Distal	546	192	199	134
Interstitial	30	192	132	134
Proximal	0	192	71	134
Total	576		4()2

Factors Affecting Recombination

Landmarks/Chromosome Structure

a. The centromere

Sherman and Stack, 1995

Location of COs in chromosome 1 of tomato

		E	uchroma	tin	Hete	erochron	natin
C-some	Length (µm)	Length (µm)	Ave no. RNs / II	RNs / µm	Length (µm)	Ave no. RNs / II	RNs / µm
1	30.0	22.5	2.44	0.112	7.5	0.04	0.005
2	21.3	17.1	2.05	0.122	4.2	0.03	0.007
3	23.1	16.0	2.07	0.131	7.1	0.03	0.004
4	20.8	13.7	1.87	0.138	7.1	0.02	0.003
5	16.2	9.5	1.63	0.168	6.7	0.04	0.006
6	18.5	12.9	1.69	0.132	5.6	0.04	0.007
7	18.5	11.6	1.75	0.155	6.9	0.02	0.003
8	18.5	11.9	1.66	0.143	6.6	0.02	0.003
9	16.2	10.0	1.58	0.160	6.2	0.004	0.0006
10	16.2	10.0	1.64	0.160	6.2	0.02	0.003
11	16.2	9.7	1.63	0.165	6.5	0.03	0.005
12	14.0	8.2	1.54	0.183	5.8	0.05	0.009

b. Heterochromatin

c. The NOR

COs in *Eremurus spectabilis* Upcott, 1936 via John, 1990

d. Telomeres

Sherman and Stack, 1995; Barton et al, 2008

e. Interchromosomal effects

Rhoades, 1958

0	GI Lg		<u> </u>	al 3L
0	GI Lg	<u>A</u>	D	f3 3L
	Cross		GI — Ig	Lg – A
	N3L / N3L		28.0	30.6
	N3L / N3L*		29.0	28.2
	N3L / D3L		35.1	12.8

Marcus Rhoades 1903 - 1991

An indel during pairing

● Yg C Sh E	<u>Bz Wx</u> o	normal 9S
Yg C Sh E	Bz Wx	- 0 Tp 9S
Cross	Yg – Sh	Sh – Wx
N9 / N9	21.0	17.0
Tp9 / N9	2.0	2.0
Тр9 / Тр9	29.0	18.0

f. Chromosome length

Rees & Durant, 1986; Sherman & Stack, 1995; Anderson et al., 2003

Rees & Durrant, 1986

Table from John, 1990: Species	2C DNA (pg)	DNA content (pg) of II with means of:			
Species	And S. Sool A.D.	1.5 xta	2 xta	3 xta	
Lathyrus clymenum	13.43	1.0	1.4	2.2	
L. cicero	14.64	1.3	1.8	2.8	
L. sativus	16.78	2.1	2.7	3.8	
L. tinitanus	22.08	2.4	3.1	4.4	
Lolium perenne	4.16	0.36	0.8		
L. temulentum	6.23	0.51	1.2		

- The following data are from tomato (Sherman and Stack, 1995):							
Chromosome	Mean Length	CO/Chromosome	Unit Length per CO				
1	30.0	2.48	12.10				
2	21.3	2.08	10.24				
3	23.1	2.10	11.00				
4	20.8	1.89	11.00				
5	16.2	1.67	9.70				
6	18.5	1.73	10.69				
7	18.5	1.77	10.45				
8	18.5	1.68	11.01				
9	16.2	1.58	10.25				
10	16.2	1.66	9.75				
11	16.2	1.66	9.76				
12	14.0	1.59	8.80				

g. Arm length

Sherman and Stack, 1995

h. Knobs

Naranjo and Lacadena, 1980; Stack et al., 2017

i. MITEs

Gaut et al., 2007

j. Retrotransposons Dooner & He, 2008

k. Gene density

Fengler et al., 2007

Maize Chromosome	Genic sequences	Genetic length (cM)	Correlation between genes and recombination
1	3357	1137.9	0.96
2	2619	725.3	0.95
3	2478	829.9	0.90
4	2286	750.2	0.83
5	2618	676.7	0.93
6	1721	548.7	0.92
7	1757	618.4	0.85
8	1970	632.0	0.77
9	1608	638.7	0.93
10	1432	533.7	0.78
total/Ave	21,846	7090.0	0.87

I. Alien introgressions Liharska et al., 1996

Effect of CO variability on linkage maps

Sherman & Stack, 1995

Demarly, 1979

Factors Affecting Recombination

Genetics

A. Gender - Heterochiasmy John 1991

	Xma	freq.	Di	st'n
	Ŷ	്	ę	്
Fritillaria martagon	41.0	36.3		
F. meleagris	37.8	24.8		
F. longiflorum	31.4	27.3		
Allium nigrum	16.9	21.9	R*	R
A. consanguineum	17.5	21.9	R	R
А. сера	17.9	22.4	R	R
A. kachrooi	15.0	12.9	P*	R

de Vicente & Tanksley, 1991

Heterochiasmy

Zickler & Kleckner, 1999; Koul & Nagel, 2002; Giraut et al, 2011; Lloyd, 2022

DNA loops on bumblebee pachytene chromosomes. Zickler & Kleckner, 1999

Koul & Nagel, 2002;

Popa. 2011

Säll & Nilsson, 1994

Relative frequency

Figure 6. Comparison of CO in O (dotted) and O (solid) meiosis of barley

B. B chromosomes

John, 1990

Тр9/Тр9	Yg-C	C-Wx
+ 0 B	28.8	17.7
+ 1 B	12-13	37.0
+ 2 B	12-13	40.4
+ 3 B	12-13	42.0

	Mean chiasmata/cell									
Species:	0B	1B	2B	3B	4B	5B	6B	7B	8B	10B
Crepis capillaris	1 4.08	3.90	4.65	4.68	5.33					
Puschkinia libanotica	1 9.07	10.82	11.70	11.62	13.80					
Lolium perenne	<mark>↓</mark> 11.93	11.21	10.00							
Festuca mairei	t 18.87	20.95	22.85	26.25	28.00					
Zea mays	t 1 8.50		19.50	19.70	19.80		22.53		23.80	19.80
Secale cereale -inbred	↓ 14.85	13.43	13.22	13.29	12.64	12.86	13.20	<mark>1</mark> 2.64	13.03	
- wild	13.20	15.12	16.57	17.78	18.40					
Listeria ovata - PMC	1 26.9	28.9	28.2	30.3	29.1					
- EMC	t 30.3	32.6	31.3	32.5	32.7					

C. Genes

Robert, Farcy, & Cornu, 1991

	rm1/rm1	Rm1/rm1	Rm1/Rm1
Hf1-Lg1	15.3%	26.9%	
An2-Rt	0-0.5%	6%	26%

D. Desynaptic mutants

Ji et al., 1999

E. Species

Price et al., 1993

	Distance (cM)			
Interval	Tomato	Pepper		
CT268 - TG273	23.0	5.7		
TG197 - TG158	52.2	34.6		
r458 - TG31	2.8	5.0		
TG48 - CD30A	15.6	6.0		
CT128A - CT166	28.9	20.3		
TG366 - TG244	86.3	75.3		
TG264 - TG574	15.5	15.4		
TG363 - CD64	18.3	23.2		
TG623 - TG379	49.0	0.0		
TG232 - TG253	46.3	51.9		
TG20 - TG499	10.6	9.2		
TG201 - TG496	10.6	9.2		
TG47 - TG400	6.4	13.7		
TG618 - TG296	39.9	0.0		
TOTAL:	441.2	282.0		

F. Zygosity

Robbins et al., 1995

Case I: homozygosity increases CO

Case II: homozygosity decreases CO

G. Genotype

Williams, Goodman, and Stuber, 1995

МАР	amp1 - mdh4	mdh4 - pgm1	pgm1 _ phi1	phi1 - dia2	dia2 - acp4	Total cM ×1000
Wendel (1989)	15.0	19.0	25.0	14.0	13.0	86.0
Composite	9.7	15.9	17.4	14.4	12.7	70.2
Composite US genotypes	12.4	19.3	15.0	9.3	10.5	66.5
B73	8.5	16.2	11.7	11.6	9.4	57.4
Gourdseed	6.9	17.5	19.2	11.1	12.3	66.9
Composite Exotic genotypes	11.8	19.1	17.6	15.7	12.9	77.2
NC300	12.1	17.4	18.9	14.7	15.0	78.1
Serrano	13.0	25.1	20.6	22.8	13.0	94.5
Tepecintle	11.0	17.9	12.6	20.9	12.3	74.7
Tuxpeño	12.5	21.2	21.6	8.0	15.1	78.3
Confite Puneño	16.7	23.0	18.7	7.1	11.5	76.9
Cónico	6.3	17.7	11.1	19.1	20.4	74.6
Coroico	15.4	13.2	15.6	19.9	10.8	74.9
Costeño	10.4	24.0	22.2	15.0	9.0	80.6
Cuban Flint	8.8	13.9	17.0	17.8	12.3	69.6
Composite High	12.5	21.2	20.3	14.9	14.3	83.2
Composite maize × teosinte	4.8	6.3	18.6	12.7	13.5	56.0
Balsas teosinte	14.0	9.3	24.5	12.2	9.8	69.8
Zea diploperennis	0	3.9	11.8	15.2	18.1	49.0
Central Plateau teosinte	0	5.6	20.7	10.6	12.7	49.7

I. Helicases FANC & Req4 Crismani et al., 2012

Serra et al, 2018

Mieulet et al., 2018

Barakate et al, 2021

Capilla-Pérez et al, 2024

There are two types of crossovers

- Class I
 - o The most common
 - o Subject to interference
 - Limited by dosage of
 - HEI10
 - Phosphatase X1
 - Synaptonemal proteins ZYP1/SCEP1/SCEP2
- Class II
 - Limited by 3 protein complexes
 - TOP3/RECQ4AB/RMI1
 - FANCM
 - FIGL1/FLIP

Number of COs per F2 plant

Factors Affecting Recombination Environment

1. Age Bridges, 1915

•

2. Temperature

Dowrick, 1957

°C	Time (h)	% interstitial xmata	Total xmata (100 PMC)	°C	Time	% interstitial xmata	Total xmata (100 PMC)
control		2.3	743	control		2.2	757
20	12	4.8	773	34	12	8.8	832
	24	6.2	836		18	18.9	984
	48	11.9	847		24	21.6	1006
	96	15.3	842		48	12.1	860
	192	13.7	883		96	0.7	431
control		2.0	707	control		2.3	743
27	12	7.4	757	39	18	16.8	841
	24	15.8	845		24	41.2	1152
	48	17.4	849		27	29.4	961
	144	17.3	851		30	19.3	787
					48	0	72

Francis et al., 2007

3. Stress

Bennett & Rees, 1970

Sinha & Helgason, 1969

- $\circ \quad \text{Actinomycin D}$
- o Diepoxybutane
- Increased recombination distance to

4. Position on flower head

Francis et al., 2007

A NOTE OF CAUTION Barth et al, 2000

Manipulating Crossovers

Yanagira et al., 1992

Gene order: Wx - C - S - 5 on chromosome 6

Esch et al., 2007

Engineering recombination hotspots

Kuo et al, 2021

Kouranov et al, 2022

Limitations

Taagen et al., 202

