Problem:

Conventional stains allow observation of only 1 structure:

- Where are the centromeres?
- Where are the telomeres?
- How are satellites/transposons distributed in the genome?
- Where are proteins/organelles located?

Solution: label different structures for simultaneous viewing!

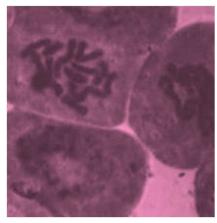
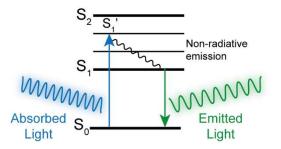
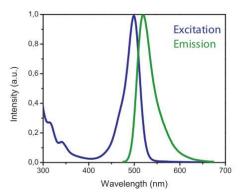




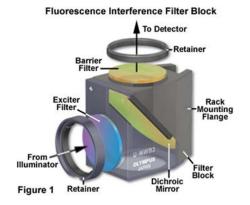
Figure 1. Former 8890 student: Mary Sledge, alfalfa

Stoke's law

Figure 2. https://biotium.com/; Scientific Volume Imager

😮 BD 405 100 450/40 585/42 5B0/B0 80 60 DAPI FITC PE BV650 40 20 0 350 400 450 500 550 600 650 700 750 zoomed...334 - 778 Wavelength (nm)

Fluorochromes & emission spectra


Figure 3. http://flowcytometry.utoronto.ca/applications/cell-viability/viabilty_unfixed/

Light path of a fluorescence microscope

- Band pass filter -
- Light source Long/short pass filter -• **Excitation filter** Dichroic Excitation filter mirror Detection Barrier filter Excitation Emission beam beam Barrier filter -• Specimen
- Dichroic mirror –

https://biotium.com

The filter cube

A typical fluorophore set allows simultaneous detection of four colors

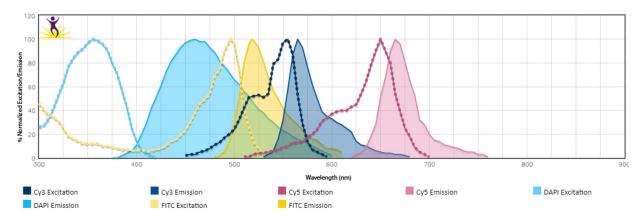


Figure 4. BioLegend

Fluorescence microscopy allows simultaneous viewing of different cellular features

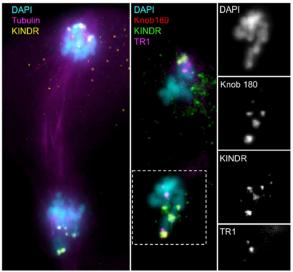


Figure 5. Dawe et al. (2018) Cell

What can be labeled with fluorochromes?

- Whole chromosomes (DAPI, PI, Hoechst, SYTO)
- DNA sequences (FISH probes, Oligo Paints, RGEN-ISL)
- Proteins (Immunofluorescence, GFP)
- Natural autofluorescent compounds (cellulose, lignin)
- Organelle/molecule-specific markers (many)

Example: FISH can be used for karyotyping

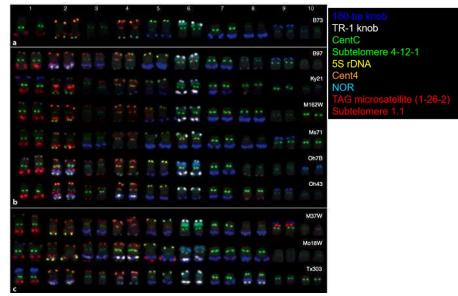


Figure 6. Albert et al. (2010) Cytogenetic and Genome Research

Example: Chromosome paints can label whole chromosomes

Figure 7. Kyle Swentowsky @ Birchler lab